Phosphorous Acid Application Methods

John Cornell
Agronomist
Fruit Production Consultant
What is Phosphorous Acid?

- Phosphorous Acid is sold both as an unbuffered acid product as well as a buffered product.
- The unbuffered acid typically has an assay of about 0-60-0.
- A buffered product typically having about half as much phosphorous in the formulation.
What is Phosphorus Acid?

- Both buffered and unbuffered products can be used as a fertilizer and pesticide in the state of California.

- Buffered phosphorous acid products are sometimes referred to as phosphites or phosphonates.
What is Phosphorous Acid?

- Pesticide and fertilizer applications are treated differently, even though the composition of the products may be identical.
 - Fertilizer applications are mostly unregulated.
 - Pesticidal applications requires the applicator to follow strict rules and guidelines.
What is Phosphorous Acid?

- Phosphorous Acid has the chemical formula H₃PO₃.
- It’s much more common cousin phosphoric acid has the chemical formula H₃PO₄.
What is Phosphorous Acid?

- Almost all phosphorous containing fertilizers sold in the USA are comprised of phosphoric acid or its salts. For example:
 - MAP (monoammonium phosphate)
 - DAP (diammonium phosphate)
 - MKP (monopotassium phosphate)
Phosphorous Acid as a Nutrient

- As a nutrient, phosphorous acid could be considered a time release fertilizer.
- Its role as a nutrient is largely dependent on its conversion from phosphite (PO₃) to phosphate (PO₄).
- This conversion process is ongoing but accelerated by increased temperatures and organisms present in the environment.
Phosphorous Acid as a Nutrient

- In addition to having time release properties, phosphorous acid is less reactive than phosphoric acid.
- It will not be as likely to form insoluble precipitates rendering it unavailable to the plant.
Application Methods

- Foliar
- Injection
- Fertigation
Foliar

- Can apply many different products at the same time, saving labor.
 - Fast uptake
 - Moderate labor requirements
- Drift of spray materials may be undesirable.
Spray when leaves look like this:
Injection

- Effective if done correctly
- Need to have at least two injection sites, preferably three or more per tree to insure complete protection
- Almost all of applied product is consumed by the tree
- Highest labor costs of available methods
Injection

- Injection amounts should be 15 to 20 mls (.5 to .66 ounces) of a buffered product (0-29-26) per one meter (yard) of canopy diameter.

- Example:
 - grove with mature trees planted on 20 X 20 foot spacing should inject about 6 X 20 or 120 mls (4 ounces or about 2.6 shot glasses) per tree.

- If injecting, only use a buffered product.
Injection

Fig 1-A,B,C-Branch canker and bark peeling on avocado after pouring non-buffered Phosphorous acid into an artificially drilled hole.

Fig 2-Callus formation and healed bark after application of buffered Phosphorous acid using an injector.
Injection

- Trunk injection:
 - Eliminates spray drift
 - Reduces worker exposure
 - Protects natural enemies
 - Limits the AI needed to protect the crop

Image by Marlene Cameron

Slide by John C. Wise
Injection

- Trunk Injection represents an alternate technology for delivering pesticides to tree fruit crops.
- Only buffered products should be used for injection.

Image by Marlene Cameron

Phosphorous Acid Application Methods
Injection

- Current market available trunk injection tools:
 - Needle-based tools:
 - Wedgle direct-Inject System®
 - Bite-infusion®.
Injection

- Drill-based tools:
 - Mauget capsules®
 - ChemJet spring powered injector®
 - Quik-jet micro-injection system®
 - Viper air/hydraulic micro-injection system®
 - Tree IV air/hydraulic micro-injection system®.

Slide by John C. Wise
Injection
Injection

- Quik Jet
- Mauget pressurized capsules
- ChemJet spring syringes
Injection

- Bite
- Wedgle Direct Inject System
- Tree IV

Phosphorous Acid Application Methods

Slide by Srdjan Acimovic
Injection

- Viper Air-Hydraulic
Injection

- Callus healing of drill-based tool wound

Slide by Srdjan Acimovic
Injection

➢ Callus healing of needle-based tool wound
Injection

- Advantages
 - Limited treatment schedule
 - Eliminate spray drift
 - Reduced worker exposure
 - Reduced pesticide exposure to natural enemies
 - May be able to reduce total pesticide load.
Injection

- Disadvantages
 - Slow application time
 - Wound/tree health
 - Impact on pollinators unknown
 - Time and resources needed to add trunk injection as a labeled use.
 - Concerns over “consumer perceptions” about food safety
Fertigation

- Least expensive method available
- Can be combined with other products
- Efficiency of uptake can vary significantly
- May accelerate resistance, so it should be avoided if possible.
Phosphorous Acid Application Methods
Phosphorous Acid
Application Methods
Phosphorous Acid
Application Methods
Phosphorous Acid Application Methods
Phosphorous Acid Application Methods
Phosphorous Acid Application Methods
Phosphorous Acid Application Methods
Phosphorous Acid Application Methods
Phosphorous Acid Application Methods
Phosphorous Acid Application Methods
Phosphorous Acid
Application Methods
Phosphorous Acid Application Methods